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Abstract

The evolution of the effective diffusivity of a pseudo-continuum model of a ZSM5 particle in which progressive blockage occurs is
calculated from a network model using bond- and site-percolation theory and the effective medium approximation (EMA). Reduced clusters
of varying complexity are evaluated with respect to their capability of accurately predicting the relationship between the evolution of the
effective diffusivity with the blockage. A combination of EMA and scaling leads to an excellent agreement with the results of Monte Carlo
simulation on a 20× 20× 20 lattice. The retained relationship is used in the simulation of reaction and diffusion in a ZSM5 particle of a
fixed bed reactor. The catalyst is subject to deactivation by coke formation leading to site coverage and pore blockage. © 2001 Elsevier
Science B.V. All rights reserved.

Keywords:Effective diffusivity; Percolation; Pseudo-continuum model; Effective medium approximation

1. Introduction

Transport phenomena inside solid particles are generally
described in terms of a continuum model containing an
“effective” diffusivity that combines molecular and Knud-
sen diffusivities and accounts for the heterogeneous nature
of the solid through the porosity,ε, and the tortuosity,τ .
The latter expresses the average deviation of the pore ori-
entation with respect to the normal from the surface to the
center. This reduces the structure of the particle to that of
a single pore or at best to that of a bundle of parallel pores
with a distribution in their diameter, but no interconnection.
Beeckman et al. [4] and Beeckman and Froment [5–7] rep-
resented the internal structure of a catalyst by a tree-like
structure, identical to the Bethe-lattice. Tree-like models in-
clude interconnection, but there is only one path connecting
two points, whereas there may be an infinite number in a
real catalyst, in principle at least. Accounting for the latter
possibility leads to so-called network models. These require
percolation theory to describe the evolution of the accessi-
bility as a function of blockage [2,3,8,9,15–17,20,23,27].

In most networks the accessibility becomes zero before all
bonds or sites are blocked. The blockage probability caus-
ing zero accessibility is known as the percolation thresh-
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old. Bond percolation deals with blockage in the channels
or bonds of the network, site percolation with blockage in
the channel intersections or nodes. In classical percolation
theory, the relationship between the accessibility or percola-
tion probability and the blockage probability is obtained by
adding up all the probabilities of occurrence of clusters of
various sizes surrounding the origin. This leads to a polyno-
mial approximation including a large number of terms and
substantial computational efforts.

The influence of blockage on mass transfer can be mod-
eled using the effective medium approximation (EMA),
originally developed by Bruggeman [10] and Landauer
[14] as a tool for the estimation of properties of random
two-component mixtures. Kirkpatrick [13] further devel-
oped the method and applied it as a means to obtain the
conductivity of resistor networks from which a fraction
of the resistors is removed at random. Essentially, EMA
approximates the overall conductivity of a random resistor
network by averaging the conductivity of a reduced cluster
of bonds or sites in the network. More recent chemical
engineering applications were published by Burganos and
Sotirchos [11], Sahimi [21] and Zhang and Seaton [26].

The present paper deals with blockage in a zeolite cata-
lyst, more particularly in ZSM5. The blockage affects the
accessibility of the active sites and, therefore, the catalyst ac-
tivity, but also the diffusion pathway of the reacting species,
in other words the effective diffusivity. EMA clusters of
varying complexity are evaluated with respect to their capa-
bility of accurately predicting the relationship between the
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Nomenclature

C concentration (kmol/m3 gas)
Ĉ Fourier transformed concentration

(kmol/m3 gas)
ĈC particle averaged coke content

(kg coke/kg cat× 100)
D molecular diffusivity (m2 gas/s)
Deff effective diffusivity (m3 gas/m cat/s)
DC

AB total diffusivity between nodes A and B
in the composite network (m2 gas/s)

D
eq
AB total diffusivity between nodes A and B

in the equivalent network (m2 gas/s)
Dh

AB diffusivity between nodes A and B in the
homogeneous part of the composite
network (m2 gas/s)

l length of channel segment or lattice
constant (m)

M transformed diffusivity matrix, expresses
relation between concentrations and fluxes
in the peripheral nodes of the stochastic
cluster (m2 gas/s)

N molar flux (kmol/m2 cat/s)
q blockage probability
qcluster blockage probability of the stochastic

cluster
qs node blockage probability
r radial coordinate inside particle (m cat)
R radius of particle (m cat)
(x, y, r) coordinates (m, m, m)

Greek symbols
δ indicator variable, 1 if bond i is opened,

0 if blocked
(ξ, η, ρ) coordinates in Fourier domain

(m−1, m−1, m−1)

ΛZSM5 characteristic function for the ZSM5 lattice

Subscripts
AB bond AB
eq equivalent network
i internal nodes
ij bond ij
p peripheral nodes
0 indicates the absence of coke or blockage

effective diffusivity and the blockage for both bond- and site
percolation. The retained configuration is used in the calcu-
lation of the effective diffusivity in ZSM5 catalyzing a pro-
cess in which the blockage results from coke formation. It
is thereby assumed that coke deposition only affects mass
transfer if it is blocking the pore in which it occurs. In other
words, a decrease of the effective diffusivity due to constric-
tion of the pore cross-section is not considered. This corre-

sponds to a situation encountered when the growth of coke
is very rapid with respect to the rate of site coverage.

2. EMA

How are the effective diffusivities of the continuum model
representation of a catalyst particle affected by a progres-
sive and random blockage? In the corresponding network
model bonds or nodes are randomly blocked and the net-
work is said to be perturbed. The first step consists in the
introduction of an equivalent network in which all bonds or
nodes are open. The diffusivity in the individual bonds of
the equivalent network, referred to as the equivalent diffu-
sivity, Deq, is lower than the diffusivity in the open bonds of
the perturbed network, of course. If the blockage probability
in the perturbed network increases, the effective diffusivity
and the equivalent diffusivity proportionally decrease. The
evolution ofDeq with respect to its original value, i.e. be-
fore blockage occurred, has to be the same as that of the
effective diffusivity,Deff .

The objective of EMA is to construct a small size net-
work that permits the derivation of the relation between the
diffusivity and the blockage without considering the com-
plete network, thus avoiding the excessive computation this
would involve. To this end a composite network is defined.
It consists of a homogeneous part, taken from the equiva-
lent network, and a stochastically blocked cluster, which is
taken from the perturbed network and whose size has to be
optimal.

Let A and B be two nodes in the corresponding per-
turbed, equivalent and composite networks. Consider a com-
posite network containing a stochastic cluster consisting of
one bond, AB. This bond may be opened or blocked, so
that its diffusivity is distributed according to the binary
distribution.

f (D) = qδ(0) + (1 − q)δ(D − D0) (1)

The presence of the stochastically blocked bond AB causes a
disturbance in the flux-concentration pattern of the otherwise
homogeneous network. The basic EMA equation states that
this disturbance has to averages to zero〈

Deq − D

D + Dh
AB

〉
= 0 (2)

The solution of this equation is based on the relation be-
tween the diffusivity of a channel segment in the equiv-
alent network,Deq, the total diffusivity between nodes A
and B in the equivalent network,Deq

AB, and the diffusiv-
ity of the homogeneous part of the composite network,
Dh

AB

D
eq
AB = Deq + Dh

AB (3)

In the following, a topological description of the ZSM5
catalyst is given first. Then, for bond percolation, EMA is
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Fig. 1. ZSM5 lattice.

applied to clusters of up to four bonds. The result obtained
with the 4-bond cluster is used to model transport and re-
action in a ZSM5 catalyst whose channel intersections are
progressively blocked, so that the site-percolation approach
is required. Switching from bond- to site percolation is
straightforward in this case, however.

3. Geometrical representation of ZSM5

The channel structure of ZSM5 is topologically equiv-
alent to that of the diamond lattice for which Gaunt and
Sykes (1983) [12] expressed the site-percolation proba-
bility in terms of a polynomial of order 20, leading to a
site-percolation threshold of 0.5701.

The ZSM5 lattice is composed of two channel types:
straight and zigzag. Three main directions can be distin-
guished in the lattice (Fig. 1 ). The straight channels are ori-
ented along one of these directions; the zigzag channels are
parallel to the two other main directions and are orthogonal
to the first direction. The coordination number of the ZSM5
lattice equals 4. In every node, two straight channel segments
merge with two zigzag channel segments. In what follows,
all channel segments are considered to have equal length.

Fig. 2. Coordinate system for ZSM5 lattice.

Two types of nodes are defined, depending upon the po-
sition of the neighboring zigzag channels. Type 1 nodes are
defined as those nodes in Fig. 1 with one zigzag channel
segment to the left and the other one behind; type 2 nodes
have their neighboring zigzag channels situated to the right
and in front. All neighboring nodes of a type 1 node are
of type 2 and vice versa. Concentrations in type 1 nodes
are represented asC(1), concentrations in type 2 nodes as
C(2). The coordinates of type 1 nodes are represented in
the coordinate system of Fig. 2 by(x, y, 2r − x − y), the
coordinates of the type 2 nodes by(x, y, 2r − x − y + 1),
wherex, y and r are integer values. The sum of the coor-
dinates is always even for type 1 nodes and odd for type
2 nodes.

4. Blockage in the catalyst channels

4.1. Stochastic cluster with one bond, oriented along the
straight channels

A diffusivity D is attributed to the bond of the stochas-
tic cluster. The value of this diffusivity is stochastically dis-
tributed. The end nodes of the bond are written as node 0
and node 1 (Fig. 3). A fluxN , directed from 0 to 1, is im-
posed over the bond.

Let Dh
01 be the diffusivity between the two end nodes 01

in the homogeneous part of the composite network andD
eq
01

the diffusivity in the equivalent network. The diffusivityDh
01

is related to the equivalent network diffusivityDeq
01 through

Eq. (3).
First, D

eq
01 is calculated as a function ofDeq. This

is done using the Fourier transformation method. Let
node 0 be located in the origin of the network, with
coordinates (0, 0, 0) and node 1 be located on the
straight channel segment above node 0, having coordinates
(0, 0, 1).
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Fig. 3. EMA application to ZSM5 lattice. Stochastic cluster containing
one bond along the straight channel.

The material balance over a type 1 node yields

4C(1)
eq (x, y, 2r − x − y) − C(2)

eq (x, y, 2r−x−y+1)

−C(2)
eq (x, y, 2r − x − y − 1) − C(2)

eq (x−1, y, 2r−x−y)

−C(2)
eq (x, y − 1, 2r − x − y) = Nl

Deq
δx0δy0δr0 (4a)

In type 2 nodes, the material balance becomes

4C(2)
eq (x, y, 2r − x − y + 1) − C(1)

eq (x, y, 2r − x − y + 2)

−C(1)
eq (x, y, 2r − x − y) − C(1)

eq (x + 1, y, 2r−x−y+1)

−C(1)
eq (x, y + 1, 2r − x − y + 1) = − Nl

Deq
δx0δy0δr0

(4b)

Fourier transformation leads to the following equations:

4Ĉ(1)
eq − [1 + e−iρ + e−i(ξ+ρ) + e−i(η+ρ)]Ĉ(2)

eq = Nl

Deq
(5a)

−[1 + eiρ + ei(ξ+ρ) + ei(η+ρ)]Ĉ(1)
eq + 4Ĉ(2)

eq = − Nl

Deq
(5b)

yielding the concentrationŝC(1)
eq andĈ

(2)
eq

Ĉ(1)
eq (ξ, η, ρ) = Nl

2Deq

3−e−iρ −e−i(ξ+ρ)−e−i(η+ρ)

ΛZSM(ξ, η, ρ)
(6a)

Ĉ(2)
eq (ξ, η, ρ) = − Nl

2Deq

3−e−iρ −e−i(ξ+ρ)−e−i(η+ρ)

ΛZSM(ξ, η, ρ)
(6b)

The denominator,ΛZSM5, is characteristic for the ZSM5
lattice

ΛZSM5(ξ, η, ρ) = 6 − cosξ − cosη − cosρ − cos(ξ − η)

− cos(ξ + ρ) − cos(η + ρ) (7)

Finally, D
eq
01 is obtained as a function ofDeq by inverse

transformation

1

D
eq
01

= C
(1)
eq (0, 0, 0) − C

(2)
eq (0, 0, 1)

Nl

= 1

Deq

1

(2Π)3

∫ Π

−Π

dξ

∫ Π

−Π

dη

∫ Π

−Π

dρ

×3 − cosρ − cos(ξ + ρ) − cos(η + ρ)

ΛZSM5(ξ, η, ρ)
(8)

Numerical integration leads toDeq
01 = 2Deq.

The link betweenDeq and the blockage probabilityq
is now easily obtained using the classical EMA approach.
Eq. (3) shows that the homogeneous network diffusivity,
Dh

01, equals the diffusivity in a bond of the equivalent net-
work, Deq. Substitution of this value into Eq. (2) and intro-
duction of the binary distribution (Eq. (1)) gives a linear re-
lationship between the network diffusivity and the blockage
probability

Deq

D0
= 1 − 2q (9)

leading to a percolation threshold,qC, of 0.5.

4.2. Stochastic cluster with two adjacent bonds
along the straight channels

Before turning to larger stochastic clusters, the EMA ap-
proach is applied to a cluster containing two adjacent bonds,
oriented along the straight channels. The cluster is repre-
sented in Fig. 4. The bonds are indicated as 01 and 03. A
flux N enters the cluster at node 1 and leaves it at node 3.
Symmetry imposes that the homogeneous network diffusiv-
ities Dh

01 andDh
03 be equal (Fig. 5).

Application of the combination rules for series and paral-
lel connection of conductors gives the following expressions
for the diffusivities in the composite network,DC

01 andDC
13:

DC
01 = D1 + Dh

01 + 1

(1/Dh
13) + (1/(D3 + Dh

01))
(10a)

Fig. 4. ZSM5 lattice. Stochastic cluster containing two adjacent bonds
oriented along the straight channel.
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Fig. 5. ZSM5 lattice. Definition of diffusivities in a composite network
containing a stochastic cluster with two adjacent bonds along the straight
channels.

DC
13 = Dh

13 + 1

(1/(D1 + Dh
01)) + (1/(D3 + Dh

03))
(10b)

An expression forDC
03 is obtained by exchangingD1 and

D3 in Eq. (10a).
In order to obtain the EMA approximation for the equiv-

alent diffusivity Deq the diffusivities in the composite net-
work have to be expressed as a function ofDeq and the
stochastic variablesD1 andD3. To that end, a relationship
has to be found between the diffusivitiesDh

01 andDh
03 and

the equivalent diffusivityDeq.
First, the diffusivities in the equivalent network,D

eq
01, D

eq
03

andD
eq
13, are expressed as functions ofDeq and the diffusiv-

ities Dh
01 andDh

03. This is accomplished by settingD1 and
D3 equal to the equivalent diffusivityDeq in Eqs. (10a) and
(10b).

Next, expressions are derived forD
eq
01, D

eq
03 and D

eq
13 as

functions ofDeq only. In Section 4.1, it was derived that
D

eq
01 equals 2Deq. Due to the symmetry of the stochastic

cluster,Deq
03 has the same value. An expression forD

eq
13 is

found through Fourier transformed material balances. Using
the same network representation as in Section 3, the nodes
0, 1 and 2 are represented by the coordinate triples (0, 0,
0), (0, 0, 1) and(0, 0, −1). The left-hand sides of the ma-
terial balance equations are identical to those of Eqs. (4a)
and (4b), the right-hand sides to 0 for type 1 nodes and to
(Nl/Deq)(δX0δY0δr0 − δx0δy0δr , 1) for type 2 nodes. After
Fourier transformation the left-hand sides become equal to
those of Eqs. (5a) and (5b), the right-hand sides to 0 and
(Nl/Deq)(l − eiρ). Solution of this system yields the con-

centrations in the Fourier domain̂C(1)
eq andĈ

(2)
eq . For type 2

nodes, one obtains

Ĉ(2)
eq = 2Nl

Deq

1 − eiρ

ΛZSM5(ξ, η, ρ)
(11)

whereΛZSM5(ξ, η, ρ) is given by Eq. (7). The diffusivity

D
eq
13 is calculated from

1

D
eq
13

= C
(2)
eq (0, 0, 1) − C

(2)
eq (0, 0, −1)

Nl

= 4

Deq

1

(2Π)3

∫ Π

−Π

dξ

∫ Π

−Π

dη

∫ Π

−Π

dρ
1− cosρ

ΛZSM5(ξ, η, ρ)

(12)

Numerical integration leads toDeq
13 = 3

2Deq. Similar calcu-
lations yield the same result forDeq

12 andD
eq
24.

Substitution of the numerical values forD
eq
01, D

eq
03 andD

eq
13

into Eqs. (10a) and (10b) leads to the following equations for
the diffusivities in the homogeneous part of the composite
network:

Dh
01 = Dh

03 = 1
2Deq, Dh

13 = 3
4Deq.

Finally, an EMA expression is obtained by imposing that the
average concentration difference over the stochastic cluster
in the composite network equals the concentration difference
over the corresponding cluster in the equivalent network:
〈1C13〉 = 〈1C

eq
13〉, so that〈

2D2
eq + (D1 + D3)Deq − 4D1D3

4D2
eq + 5(D1 + D3)Deq + 4D1D3

〉
= 0 (13)

Introduction of the binary diffusivity distribution (Eq. (1))
yields an equation which is quadratic in the blockage prob-
ability q and the ratioDeq/D0

9q2−12q

(
Deq

D0

)
−2

[
4

(
Deq

D0

)2

+ Deq

D0
− 5

]
= 0 (14)

Setting the equivalent diffusivityDeq equal to zero yields a
valueqC = 0.5168 for the percolation threshold.

4.3. Stochastic cluster with four adjacent bonds

4.3.1. Definition of the problem
Consider a stochastic cluster, consisting of four bonds, 01,

02, 03 and 04 (Fig. 6). These are the bonds adjacent to the
origin 0. LetD1, D2, D3 andD4 be the diffusivities of these
bonds. In the composite network, six homogeneous network

Fig. 6. ZSM5 lattice. Stochastic cluster containing four adjacent bonds.
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Fig. 7. ZSM5 lattice. Composite network with stochastic cluster containing four adjacent bonds.

diffusivities can be defined:Dh
12, Dh

13, Dh
14, Dh

23, Dh
24 and

Dh
34. In this set, due to the symmetry of the network,Dh

12,
Dh

14, Dh
23 andDh

34 are equal (Fig. 7).
The fluxes, imposed on the composite network, have to

satisfy two constraints: there is no flux entering or leaving
the network in the origin, node 0, while the sum of all fluxes
in the nodes 1, 2, 3 and 4 should equal zero. The first con-
straint is imposed because all four diffusivitiesD1, D2, D3
andD4 may become zero. In that case, the origin is inac-
cessible and introduction of a constant flux would lead to an
infinite concentration difference with respect to the rest of
the network. The second constraint results from the steady
state, which means that the number of moles of each com-
ponent remains constant in time.

In matrix notation the material balance equations in the
stochastic cluster can be represented by

D1 + D2 + D3 + D4 −D1 −D2 −D3 −D4

−D1 D1 + 2Dh
12 + Dh

13 −Dh
12 −Dh

13 −Dh
12

−D2 −Dh
12 D2 + 2Dh

12 + Dh
24 −Dh

12 −Dh
24

−D3 −Dh
13 −Dh

12 D3 + 2Dh
12 + Dh

13 −Dh
12

−D4 −Dh
12 −Dh

24 −Dh
12 D4 + 2Dh

12 + Dh
24




C0

C1

C2

C3

C4

= l


0

N1

N2

N3

N4


(15)

4.3.2. Determination of the homogeneous network
diffusivities

The homogeneous network diffusivitiesDh
12, D

h
13 andDh

24
are determined in the equivalent network. The solution pro-
cedure can be simplified using the symmetry of the stochas-
tic cluster. A matrix method will be used in the next section
to derive the relation between the equivalent diffusivity and
the blockage probability.

If a flux N enters the network at node 1 and leaves it
at node 3 (Fig. 8), the concentrationsC0, C2 and C4 are

equal because of the symmetry of the network. This means
there is no flux between nodes 0, 2 and 4 and the bonds
between these nodes can be deleted. The equivalent network
diffusivity Dh

13 can then be calculated using the series and
parallel combination rules for conductors:

D
eq
13 = 1

2Deq + Dh
12 + Dh

13 (16)

It was shown in Section 4.2 thatD
eq
13 = 3

2Deq, hence

Dh
12 + Dh

13 = Deq (17)

In an analogous way, in the presence of a fluxN directed
from node 2 to node 4

Dh
12 + Dh

24 = Deq (18)

The two preceding equations show that the homogeneous
network diffusivitiesDh

13 andDh
24 are equal.

To obtain a third equation for the homogeneous network
diffusivities, a fluxN , directed from node 1 to node 2, is
imposed (Fig. 9). Because of the equivalence ofDh

13 andDh
24

the flux pattern is symmetrical around the axis connecting
the center of the bonds 12 and 34. A material balance over
node 1 leads to
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Fig. 8. ZSM5 lattice. Stochastic cluster containing four adjacent bonds, flux pattern with vertical symmetry axis.

(2C1,eq − C2,eq − C4,eq)D
h
12 + (C1,eq − C3,eq)D

h
13

= Nl − Deq(C1,eq − C0,eq) (19)

In Section 4.2, it was pointed out that the equivalent network
diffusivity D

eq
12 = 3

2Deq, which means that the concentra-
tion differenceC1,eq−C2,eq equals2

3(Nl/Deq). The concen-
tration differenceC1,eq − C4,eq is calculated using Fourier
transforms. The concentration in a type 2 node is given by

Fig. 9. ZSM5 lattice. Stochastic cluster containing four adjacent bonds,
flux pattern with inclined symmetry axis.

Ĉ(2)
eq (ξ, η, ρ) = 2Nl

Deq

1 − ei(η+ρ)

ΛZSM5(ξ, η, ρ)
(20)

After reverse transformation and numerical integration,
C1,eq−C4,eq turns out to be1

3(Nl/Deq). Due to the symme-
try of the network, the concentration differenceC3,eq−C2,eq

equals 1
3(Nl/Deq) as well. Since node 0 is located on

the symmetry axis,C0,eq is equal to the concentration
halfway bonds 01 and 34 and the concentration difference
C1,eq−C0,eq is also given by1

3(Nl/Deq). Substituting these
results into Eq. (19) yields

Dh
12 + 1

3Dh
13 = 2

3Deq (21)

and a combination with Eqs. (19) and (20)

Dh
12 = Dh

13 = Dh
24 = 1

2Deq (22)

4.3.3. EMA calculations
The stochastic cluster contains one internal node 0, and

four peripheral nodes 1, 2, 3 and 4. Node 1 is chosen as the
reference node (Fig. 7). The matricesDii , Dpp andDip can
be written as:

D
ii

= [D1 + D2 + D3 + D4] (23)

D
pp

=


D2 + 3

2Deq −1
2Deq −1

2Deq

−1
2Deq D3 + 3

2Deq −1
2Deq

−1
2Deq −1

2Deq D4 + 3
2Deq

 (24)

D
ip

= [ D2 D3 D4 ] (25)

and theM-matrix, upon which the central EMA equation is
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based on

D2 + 3
2Deq − D2

2

D1 + D2 + D3 + D4
−1

2Deq − D2D3

D1 + D2 + D3 + D4
−1

2Deq − D2D4

D1 + D2 + D3 + D4

−1
2Deq − D2D3

D1 + D2 + D3 + D4
D3 + 3

2Deq − D2
3

D1 + D2 + D3 + D4
−1

2Deq − D3D4

D1 + D2 + D3 + D4

−1
2Deq − D2D4

D1 + D2 + D3 + D4
−1

2Deq − D3D4

D1 + D2 + D3 + D4
D4 + 3

2Deq − D2
4

D1 + D2 + D3 + D4


(26)

This matrix is inverted and averaged over all possible config-
urations of open and blocked bonds in the stochastic cluster.
The diffusivities are distributed according to the binary dis-
tribution (Eq. (1)). Weighting the invertedM-matrices with
their probabilities and requiring the result to equal the in-
vertedM

eq
-matrix yields the following relationship between

the equivalent diffusivity and the blockage probability

Deq

D0
= 1 − 1

2
(4 − q3) (27)

whereDeq becomes zero at the critical blockage probability
qC, for which an approximate value of 0.5180 is obtained.

The approximation ofqC in the bond-percolation problem
on a diamond lattice, arrived at by using EMA, differs signif-
icantly from the exact value of 0.612 (Gaunt and Sykes,1983;
[12]). EMA is most accurate for predicting the evolution
of the effective diffusivity with the blockage probability for
relatively low and medium values of the latter [26]. An ex-
tension called renormalized EMA [18,19,22] significantly
improves the accuracy over the entire range of blockage. It
will be shown below that a combination of EMA and scal-
ing yields excellent approximations over the entire range of
blockage probabilities.

5. Blockage in the catalyst channel intersections

In this section, the evolution of the effective diffusiv-
ity is modeled as a function of the fraction of blocked
nodes. This requires that the results obtained in the preced-
ing paragraphs for bond percolation, have to be adapted to
the site-percolation problem. This will be done first for a
stochastic cluster containing one internal node.

5.1. Stochastic cluster with one internal node

Consider the stochastic cluster used in Section 4.3 for the
description of the effective diffusivity as a function of the
bond blockage probability. This cluster contains one inter-
nal node surrounded by four bonds. In bond percolation, the
properties of the stochastic cluster are determined by the
bonds of the cluster, in site percolation by the central node.
Each element of the stochastic cluster can be in two states:
it can be opened or blocked. The state of an element is in-
dependent of the states of the other elements. Consequently,
the number of possible states of the stochastic cluster itself
equals 2 raised to a power corresponding to the number of

cluster elements. The cluster considered here contains four
bonds and one node. In bond percolation it can be in 24 =
16 different states, in site percolation in 21 = 2 states only.

Let theM-matrix for the cluster containing one open node
be represented byM(1) and that for the cluster containing
one blocked node byM(0). The basic EMA equation then
becomes

[D
pp

− (D
ip
)T(D

ii
)−1D

ip
]−1

= [Deq
pp

− (Deq
ip

)T(Deq
ii

)−1Deq
ip

]−1 (28)

The state of the bonds in the cluster is now determined by the
state of the central node. If it is open, all surrounding bonds
are open; if it is blocked, all surrounding bonds are blocked.
This means that matrixM(1) equals matrixM(1, 1, 1, 1) of
the bond-percolation problem discussed in Section 4.3. Ma-
trix M(0) equals matrixM(0, 0, 0, 0). The equivalent matrix
Meq remains unchanged. A linear relationship between the
equivalent diffusivity and the blockage probability is derived

Deq

D0
= 1 − 3

2
q (29)

This equation yields an approximate percolation threshold
qC of 2

3, which differs considerably from the value of 0.5701,
mentioned by Stauffer and Aharony [24] for site percolation
on the diamond lattice. The evolution of the effective diffu-
sivity with the blockage probability also differs significantly
from that obtained by means of Monte Carlo simulation on
a 20× 20× 20 lattice (Fig. 10).

Fig. 10. Equivalent diffusivities for site percolation in ZSM5. Comparison
of EMA results (curves) with Monte Carlo simulation on a 20× 20× 20
lattice (dots).
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Applying EMA to a stochastic cluster with two inter-
nal nodes requires lengthy and tedious calculations and
did not improve the approximation, probably due to the
lower symmetry of this cluster. Ahmed and Blackman
(1979) [1] pointed out that the cluster has to include the
“essential correlation”. At low values of the blockage prob-
ability the blockage of a bond or site only affects the
vicinity and a small cluster suffices to account for that.
This is not the case any more close to the percolation
threshold, where the density of accessible sites is signi-
ficantly lower and the blockage of a site may affect the
accessibility of remote sites. A different type of cluster is
required.

5.2. Stochastic cluster with one internal and one
peripheral node

The above results can be improved by taking into account
the peripheral nodes of the cluster. The stochastic cluster
with one internal node contains four peripheral nodes as
well. If the network is divided into similar clusters, then
each peripheral node is also part of four neighboring clus-
ters (Fig. 9). This means that; in addition to the central node,
the stochastic cluster contains 4× 1

4 = 1 peripheral node.
Hence, the stochastic cluster contains two nodes instead of
one. Fig. 9 shows another representation of the stochastic
cluster in which the cluster contains two complete nodes.
In Eq. (29), the probability that the central intersection is
blocked should be replaced by the probability that the clus-
ter is blocked. The cluster is blocked if at least one node
is blocked. The blockage probability of a cluster with two
nodes is given by

qcluster = 1 − (1 − qs)
2 = qs(2 − qs) (30)

Eq. (29) becomes

Deq

D0
= 1 − 3qs + 3

2
q2

s (31)

The trend reflected by this equation was already observed,
e.g. by Watson and Leath [25]. Eq. (31) leads to a thresh-
old value of 0.52. Fig. 10 shows that the equation repro-
duces the Monte Carlo simulations almost perfectly for
blockage probabilities up to 0.25, for whichDeq/D0 is
larger than 0.4, but not in the vicinity of the percolation
threshold.

5.3. Combination with scaling

Near the percolation threshold, the evolution of the equiv-
alent diffusivity is described by a scaling law with critical
exponent 2 (Stauffer and Aharoni [24]). The final approxi-
mation for the evolution of the equivalent diffusivity with the
blockage probability is obtained in two steps. First, Eq. (31)
is divided by the critical term(l − q/qC)2, yielding the

quotient series

1 − 3qs + (3/2)q2
s

[1 − (qs/qC)]2
= 1 +

(
2

qC
− 3

)
qs

+
(

3

q2
C

− 6

qC
+ 3

2

)
q2

s + · · · (32)

Truncating the series after the second-order term and mul-
tiplying it again with the critical term yields the following
expression, combining EMA with scaling

Deq

D0
=
[
1 − qs

qC

]2

×
[

1+
(

2

qC
− 3

)
qs+

(
3

q2
C

− 6

qC
+ 3

2

)
q2

s

]
(33)

in which qC = 0.5701, according to the accessibility–
blockage relationship derived by Gaunt and Sykes (1983)
for site percolation in the diamond lattice.

This equation fits the Monte Carlo results almost exactly
over the entire range of blockage probabilities (Fig. 10).
According to the EMA principle the same formula holds for
the evolution ofDeff/Deff,0,which is the ratio entering into
the application of the pseudo-continuum model.

6. An example of application

Eq. (33) has been applied by Beyne and Froment [7,8] in
the calculation of the evolution of the effective diffusivities
in a pseudo-continuum model of a ZSM5 catalyst for a chem-
ical process carried out in a fixed bed reactor. The process
consists of a main reaction A→ B with a rate determining
step A1→ B1 involving species adsorbed on single sites
and is subject to diffusional limitations. Coke is formed out
of A (parallel coking) or B (consecutive coking) and involves
irreversible site coverage followed by growth leading to pore

Fig. 11. Evolution ofDeff/Deff,0 inside a ZSM5 particle with the coke
content parallel coking.
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Fig. 12. Evolution ofDeff/Deff,0 inside a ZSM5 particle with the coke content consecutive coking.

blockage. In the case dealt with here the rate determining
step in the coke production is the irreversible site coverage,
so that the coke growth may be considered to be instanta-
neous and leading to coke particles with identical size, that
of the channel diameter. The rate equations are derived us-
ing the Hougen–Watson approach and contain deactivation
functions accounting for site coverage and pore blockage.
The effect of pore blockage on the effective diffusivity for
A in a particle located in a cross-section at a certain distance
from the bed inlet is shown in Fig. 11 for parallel coking and
in Fig. 12 for consecutive coking. The profiles ofDeff/Deff,0
follow those of the coke: with parallel coking, the local coke
content is highest at the surface and this is where the effect
of blockage on the effective diffusivity is more pronounced,
whereas with consecutive coking the effect is strongest in the
core.

7. Conclusions

The present paper describes the application of the EMA
method in modeling the evolution of the effective diffusivity
with the blockage probability in a ZSM5 lattice. The applica-
tion was developed for both bond- and site percolation. For-
mulae were derived for stochastic clusters containing up to
four bonds in the bond-percolation problem and for stochas-
tic clusters containing one internal node or one internal and
one peripheral node in the site-percolation problem. Their
accuracy was evaluated by comparison with literature data
and Monte Carlo simulation.

The combination of EMA with scaling significantly im-
proves the prediction and yields an excellent approximation
of the evolution of the effective diffusivities with block-
age over the entire range of blockage probabilities. When
inserted into a pseudo-continuum model for transport and

reaction inside a catalyst particle this relationship definitely
improves the accuracy of such a model, which is widely
used in reactor simulation, given its simplicity relative to
truly discrete or heterogeneous particle models.
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